Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38304965

RESUMO

The link between form and function is key to understanding the evolution of unique and/or extreme morphologies. Amblypygids, or whip spiders, are arachnids that often have highly elongated spined pedipalps. These limbs are used to strike at, and secure, prey before processing by the chelicerae. Amblypygi pedipalps are multifunctional, however, being used in courtship and contest, and vary greatly in form between species. Increased pedipalp length may improve performance during prey capture, but length could also be influenced by factors including territorial contest and sexual selection. Here, for the first time, we used high-speed videography and manual tracking to investigate kinematic differences in prey capture between amblypygid species. Across six morphologically diverse species, spanning four genera and two families, we created a total dataset of 86 trials (9-20 per species). Prey capture kinematics varied considerably between species, with differences being expressed in pedipalp joint angle ranges. In particular, maximum reach ratio did not remain constant with total pedipalp length, as geometric scaling would predict, but decreased with longer pedipalps. This suggests that taxa with the most elongated pedipalps do not deploy their potential length advantage to proportionally increase reach. Therefore, a simple mechanical explanation of increased reach does not sufficiently explain pedipalp elongation. We propose other factors to help explain this phenomenon, such as social interactions or sexual selection, which would produce an evolutionary trade-off in pedipalp length between prey capture performance and other behavioural and/or anatomical pressures.


Assuntos
Aracnídeos , Aranhas , Humanos , Animais , Comportamento Predatório , Fenômenos Biomecânicos , Aranhas/anatomia & histologia
2.
PeerJ ; 6: e5751, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416880

RESUMO

Sexual differences in size and shape are common across the animal kingdom. The study of sexual dimorphism (SD) can provide insight into the sexual- and natural-selection pressures experienced by males and females in different species. Arachnids are diverse, comprising over 100,000 species, and exhibit some of the more extreme forms of SD in the animal kingdom, with the males and females of some species differing dramatically in body shape and/or size. Despite this, research on arachnid SD has primarily focused on specific clades as opposed to observing traits across arachnid orders, the smallest of which have received comparatively little attention. This review provides an overview of the research to date on the trends and potential evolutionary drivers for SD and sexual size dimorphism (SSD) in individual arachnid orders, and across arachnids as a whole. The most common trends across Arachnida are female-biased SSD in total body size, male-biased SSD in relative leg length and SD in pedipalp length and shape. However, the evolution of sexually dimorphic traits within the group is difficult to elucidate due to uncertainty in arachnid phylogenetic relationships. Based on the dataset we have gathered here, we highlight gaps in our current understanding and suggest areas for future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...